

The yt Astrophysical Analysis Extension

This is yt_astro_analysis, the yt [https://github.com/yt-project/yt]
extension package for astrophysical analysis. This is primarily machinery that
used to be in yt’s analysis_modules. These were made into a separate package to
allow yt to become less astro-specifc and to allow these modules to be developed
on their own schedule.

Contents:

	Installation
	Installing from source

	Installing with Rockstar support

	Importing from yt_astro_analysis

	Available Modules
	Halo Analysis

	Synthetic Observation

	Exporting to External Radiation Transport Codes

	The Cookbook
	Example Scripts

	Example Notebooks

	Contributing

	Citing yt_astro_analysis

	Help

	Reference
	API Reference

	ChangeLog

Citing yt_astro_analysis

If you use the yt_astro_analysis package for your work, please cite the
yt_astro_analysis [https://zenodo.org/record/1458961#.W8ZcVXFKht8]
entry on zenodo.org [https://zenodo.org/] as well as the
yt method paper [http://adsabs.harvard.edu/abs/2011ApJS..192....9T].
Feel free to use the text below in your publications:

Analysis was performed using the yt_astro_analysis extension
(Smith et al. 2018) of the yt analysis toolkit (Turk et al. 2011).

Analysis was performed using the yt_astro_analysis extension
\citep{yt.astro.analysis} of the yt analysis toolkit \citep{yt}.

BbTeX entries are provided below:

@misc{yt.astro.analysis,
 author = {Britton Smith and
 Matthew Turk and
 John ZuHone and
 Nathan Goldbaum and
 Cameron Hummels and
 Hilary Egan and
 John Wise and
 Anthony Scopatz and
 Miguel de Val-Borro and
 Ben Keller and
 Mark Richardson},
 title = {yt-astro-analysis},
 month = oct,
 year = 2018,
 doi = {10.5281/zenodo.1458961},
 url = {https://doi.org/10.5281/zenodo.1458961}
}

@ARTICLE{yt,
 author = {{Turk}, M.~J. and {Smith}, B.~D. and {Oishi}, J.~S. and {Skory}, S. and
{Skillman}, S.~W. and {Abel}, T. and {Norman}, M.~L.},
 title = "{yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data}",
 journal = {The Astrophysical Journal Supplement Series},
archivePrefix = "arXiv",
 eprint = {1011.3514},
 primaryClass = "astro-ph.IM",
 keywords = {cosmology: theory, methods: data analysis, methods: numerical},
 year = 2011,
 month = jan,
 volume = 192,
 eid = {9},
 pages = {9},
 doi = {10.1088/0067-0049/192/1/9},
 adsurl = {http://adsabs.harvard.edu/abs/2011ApJS..192....9T},
 adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

 Installation

Installation

The most straightforward way to install yt_astro_analysis is to
first install yt [https://github.com/yt-project/yt#installation].
This will take care of all yt_astro_analysis dependencies. After
that, yt_astro_analysis can be installed with pip:

$ pip install yt_astro_analysis

If you use conda to manage packages, you can install yt_astro_analysis
from conda-forge:

$ conda install -c conda-forge yt_astro_analysis

Installing from source

To install from source, it is still recommended to first install yt
in the manner described above. Then, clone the git repository and install
like this:

$ git clone https://github.com/yt-project/yt_astro_analysis
$ cd yt_astro_analysis
$ pip install -e .

Installing with Rockstar support

Note

As of yt_astro_analysis version 1.1, yt_astro_analysis
runs with the most recent version of rockstar-galaxies. Older
versions of rockstar will not work.

Rockstar support requires yt_astro_analysis to be installed from source.
Before that, the rockstar-galaxies code must also be installed from source
and the installation path then provided to yt_astro_analysis. Two
recommended repositories exist for installing rockstar-galaxies,
this one [https://bitbucket.org/pbehroozi/rockstar-galaxies/], by the
original author, Peter Behroozi, and
this one [https://bitbucket.org/jwise77/rockstar-galaxies], maintained by
John Wise.

Warning

If using Peter Behroozi’s repository [https://bitbucket.org/pbehroozi/rockstar-galaxies/], the following
command must be issued after loading the resulting halo catalog in yt:

ds = yt.load(...)
ds.parameters["format_revision"] = 2

To install rockstar-galaxies, do the following:

$ git clone https://bitbucket.org/jwise77/rockstar-galaxies
$ cd rockstar-galaxies
$ make lib

Then, go into the yt_astro_analysis source directory and add a file called
“rockstar.cfg” with the path the rockstar-galaxies repo you just cloned.
Then, install yt_astro_analysis.

$ cd yt_astro_analysis
$ echo <path_to_rockstar> > rockstar.cfg
$ pip install -e .

Finally, you’ll need to make sure that the location of librockstar-galaxies.so
is in your LD_LIBRARY_PATH.

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path_to_rockstar>

 Importing from yt_astro_analysis

Importing from yt_astro_analysis

For every module that was moved from yt’s analysis_modules to yt_astro_analysis,
all imports can be changed simply by substituting yt.analysis_modules with
yt.extensions.astro_analysis. For example, the following

from yt.analysis_modules.ppv_cube.api import PPVCube

becomes

from yt.extensions.astro_analysis.ppv_cube.api import PPVCube

 Available Modules

Available Modules

These are all the modules available in yt_astro_analysis.

Contents:

	Halo Analysis
	Halo Finding

	Halo Analysis

	Overplotting Halo Annotations

	Merger Trees

	Synthetic Observation
	Light Cone Generator

	Planning Simulations to use LightCones or LightRays

	Creating Position-Position-Velocity FITS Cubes

	Exporting to External Radiation Transport Codes
	Exporting to RADMC-3D

 Halo Analysis

Halo Analysis

This section covers finding and analyzing halos using the
HaloCatalog.
If you already have halo catalogs and simply want to load them into yt, see
Halo Catalog Data [http://yt-project.org/docs/dev/examining/loading_data.html#halo-catalog-data].

	Halo Finding
	Halo Finding on Multiple Snapshots

	Halo Finder Options

	Parallelism

	Saving Halo Particles

	Halo Analysis
	Filters

	Quantities

	Callbacks

	Recipes

	Running the Pipeline

	Parallelism

	Loading Created Halo Catalogs

	Overplotting Halo Annotations

	Merger Trees

 Halo Finding

Halo Finding

Halo finding and analysis are combined into a single framework called the
HaloCatalog.

If you already have a halo catalog, either produced by one of the methods
below or in a format described in Halo Catalog Data [http://yt-project.org/docs/dev/examining/loading_data.html#halo-catalog-data], and want to
perform further analysis, skip to Halo Analysis.

Three halo finding methods exist within yt. These are:

	FoF: a basic friend-of-friends algorithm
(e.g. Efstathiou et al. 1985 [http://adsabs.harvard.edu/abs/1985ApJS...57..241E])

	HOP: Eisenstein and Hut (1998) [http://adsabs.harvard.edu/abs/1998ApJ...498..137E].

	Rockstar-galaxies: a 6D phase-space halo finder that scales well,
does substructure finding, and will automatically calculate halo
ancestor/descendent links for merger trees (Behroozi et al.
2011 [http://adsabs.harvard.edu/abs/2011arXiv1110.4372B]).

Halo finding is performed through the creation of a
HaloCatalog
object. The dataset or datasets on which halo finding is to be performed should
be loaded and given to the
HaloCatalog
along with the finder_method keyword to specify the method to be
used.

import yt
from yt.extensions.astro_analysis.halo_analysis import HaloCatalog

data_ds = yt.load("Enzo_64/RD0006/RedshiftOutput0006")
hc = HaloCatalog(data_ds=data_ds, finder_method="hop")
hc.create()

Halo Finding on Multiple Snapshots

To run halo finding on a series of snapshots, provide a
DatasetSeries [http://yt-project.org/docs/dev/reference/api/yt.data_objects.time_series.html#yt.data_objects.time_series.DatasetSeries] or
SimulationTimeSeries [http://yt-project.org/docs/dev/reference/api/yt.data_objects.time_series.html#yt.data_objects.time_series.SimulationTimeSeries] to the
HaloCatalog.
See Time Series Analysis [http://yt-project.org/docs/dev/analyzing/time_series_analysis.html#time-series-analysis] and Analyzing an Entire Simulation [http://yt-project.org/docs/dev/analyzing/time_series_analysis.html#analyzing-an-entire-simulation] for
more information on creating these. All three halo finders can be run this way.
If you want to make merger trees with Rockstar halo catalogs, you must run
Rockstar in this way.

import yt
from yt.extensions.astro_analysis.halo_analysis import HaloCatalog

my_sim = yt.load_simulation("enzo_tiny_cosmology/32Mpc_32.enzo", "Enzo")
my_sim.get_time_series()
hc = HaloCatalog(data_ds=my_sim, finder_method="hop")
hc.create()

Halo Finder Options

The available finder_method options are “fof”, “hop”, or
“rockstar”. Each of these methods has their own set of keyword
arguments to control functionality. These can specified in the form
of a dictionary using the finder_kwargs keyword.

import yt
from yt.extensions.astro_analysis.halo_analysis import HaloCatalog

data_ds = yt.load("Enzo_64/RD0006/RedshiftOutput0006")
hc = HaloCatalog(
 data_ds=data_ds,
 finder_method="fof",
 finder_kwargs={"ptype": "stars", "padding": 0.02},
)
hc.create()

For a full list of options for each halo finder, see:

	FoF (“fof”): FOFHaloFinder

	HOP (“hop”): HOPHaloFinder

	Rockstar-galaxies (“rockstar”): RockstarHaloFinder

FoF

This is a basic friends-of-friends algorithm. Any two particles
separated by less than a linking length are considered to be in
the same group. See
Efstathiou et al. (1985) [http://adsabs.harvard.edu/abs/1985ApJS...57..241E] for more
details as well as
FOFHaloFinder.

HOP

This is the method introduced by Eisenstein and Hut (1998) [http://adsabs.harvard.edu/abs/1998ApJ...498..137E]. The
procedure is roughly as follows.

	Estimate the local density at each particle using a
smoothing kernel.

	Build chains of linked particles by ‘hopping’ from one
particle to its densest neighbor. A particle which is
its own densest neighbor is the end of the chain.

	All chains that share the same densest particle are
grouped together.

	Groups are included, linked together, or discarded
depending on the user-supplied over density
threshold parameter. The default is 160.

For both the FoF and HOP halo finders, the resulting halo catalogs will be written
to a directory associated with the output_dir keyword provided to the
HaloCatalog.
The number of files for each catalog is equal to the number of processors used. The
catalog files have the naming convention
<dataset_name>/<dataset_name>.<processor_number>.h5, where dataset_name refers
to the name of the snapshot. For more information on loading these with yt, see
YTHaloCatalog [http://yt-project.org/docs/dev/examining/loading_data.html#halocatalog].

Rockstar-galaxies

Rockstar uses an adaptive hierarchical refinement of friends-of-friends
groups in six phase-space dimensions and one time dimension, which
allows for robust (grid-independent, shape-independent, and noise-
resilient) tracking of substructure. The methods are described in
Behroozi et al. 2011 [http://adsabs.harvard.edu/abs/2011arXiv1110.4372B].

The yt_astro_analysis package works with the latest version of
rockstar-galaxies. See Installing with Rockstar support for information on
obtaining and installing rockstar-galaxies for use with
yt_astro_analysis.

To run Rockstar, your script must be run with mpirun using a minimum of three
processors. Rockstar processes are divided into three groups:

	readers: these read particle data from the snapshots. Set the number of readers
with the num_readers keyword argument.

	writers: these perform the halo finding and write the subsequent halo catalogs.
Set the number of writers with the num_writers keyword argument.

	server: this process coordinates the activity of the readers and writers.
There is only one server process. The total number of processes given with
mpirun must be equal to the number of readers plus writers plus one
(for the server).

import yt

yt.enable_parallelism()
from yt.extensions.astro_analysis.halo_analysis import HaloCatalog

my_sim = yt.load_simulation("enzo_tiny_cosmology/32Mpc_32.enzo", "Enzo")
my_sim.get_time_series()
hc = HaloCatalog(
 data_ds=my_sim,
 finder_method="rockstar",
 finder_kwargs={"num_readers": 1, "num_writers": 1},
)
hc.create()

Warning

Running Rockstar from yt on multiple compute nodes
connected by an Infiniband network can be problematic. It is recommended to
force the use of the non-Infiniband network (e.g. Ethernet) using this flag:
--mca btl ^openib. For example, to run with 24 cores, do:
mpirun -n 24 --mca btl ^openib python ./run_rockstar.py.

See
RockstarHaloFinder
for the list of available options.

Rockstar halo catalogs are saved to the directory associated the output_dir
keyword provided to the
HaloCatalog.
The number of files for each catalog is equal to the number of writers. The
catalog files have the naming convention
halos_<catalog_number>.<processor_number>.bin, where catalog number 0 is the
first halo catalog calculated. For more information on loading these with yt,
see Rockstar [http://yt-project.org/docs/dev/examining/loading_data.html#rockstar].

Parallelism

All three halo finders can be run in parallel using mpirun and by adding
yt.enable_parallelism() to the top of the script. The computational domain
will be divided evenly among all processes (among the writers in the case of
Rockstar) with a small amount of padding to ensure halos on sub-volume
boundaries are not split. For FoF and HOP, the number of processors used only
needs to provided to mpirun (e.g., mpirun -np 8 to run on 8 processors).

import yt

yt.enable_parallelism()
from yt.extensions.astro_analysis.halo_analysis import HaloCatalog

data_ds = yt.load("Enzo_64/RD0006/RedshiftOutput0006")
hc = HaloCatalog(
 data_ds=data_ds,
 finder_method="fof",
 finder_kwargs={"ptype": "stars", "padding": 0.02},
)
hc.create()

For more information on running yt in parallel, see
Parallel Computation With yt [http://yt-project.org/docs/dev/analyzing/parallel_computation.html#parallel-computation].

Saving Halo Particles

As of version 1.1 of yt_astro_analysis, the ids of the particles
belonging to each halo can be saved to the catalog when using either the
FoF or HOP methods. The is enabled by default
and can be disabled by setting save_particles to False in the
finder_kwargs dictionary, as described above. Rockstar will also save
halo particles to the .bin files. However, reading these is not currently
supported in yt. See YTHaloCatalog [http://yt-project.org/docs/dev/examining/loading_data.html#halocatalog] for information on accessing halo
particles for FoF and HOP catalogs.

 Halo Analysis

Halo Analysis

Halo finding and analysis are combined into a single framework called the
HaloCatalog.
All halo catalogs created by the methods outlined in
Halo Finding as well as those in the formats discussed in
Halo Catalog Data [http://yt-project.org/docs/dev/examining/loading_data.html#halo-catalog-data] can be loaded in to yt as first-class datasets.
Once a halo catalog has been created, further analysis can be performed
by providing both the halo catalog and the original simulation dataset to
the
HaloCatalog.

import yt
from yt.extensions.astro_analysis.halo_analysis import HaloCatalog

halos_ds = yt.load("rockstar_halos/halos_0.0.bin")
data_ds = yt.load("Enzo_64/RD0006/RedshiftOutput0006")
hc = HaloCatalog(data_ds=data_ds, halos_ds=halos_ds)

A data object can also be supplied via the keyword data_source,
associated with either dataset, to control the spatial region in
which halo analysis will be performed.

The HaloCatalog
allows the user to create a pipeline of analysis actions that will be
performed on all halos in the existing catalog. The analysis can be
performed in parallel with separate processors or groups of processors
being allocated to perform the entire pipeline on individual halos.
The pipeline is setup by adding actions to the
HaloCatalog.
Each action is represented by a callback function that will be run on
each halo. There are four types of actions:

	Filters

	Quantities

	Callbacks

	Recipes

A list of all available filters, quantities, and callbacks can be found in
Halo Analysis.
All interaction with this analysis can be performed by importing from
halo_analysis.

Filters

A filter is a function that returns True or False. If the return value
is True, any further queued analysis will proceed and the halo in
question will be added to the final catalog. If the return value False,
further analysis will not be performed and the halo will not be included
in the final catalog.

An example of adding a filter:

hc.add_filter("quantity_value", "particle_mass", ">", 1e13, "Msun")

The two available filters are
quantity_value()
and
not_subhalo().
More can be added by the user by defining a function that accepts a halo object
as the first argument and then adding it as an available filter. If you
think that your filter may be of use to the general community, you can
add it to yt_astro_analysis/halo_analysis/halo_catalog/halo_filters.py and issue a
pull request.

An example of defining your own filter:

def my_filter_function(halo):

 # Define condition for filter
 filter_value = True

 # Return a boolean value
 return filter_value

Add your filter to the filter registry
add_filter("my_filter", my_filter_function)

... Later on in your script
hc.add_filter("my_filter")

Quantities

A quantity is a call back that returns a value or values. The return values
are stored within the halo object in a dictionary called “quantities.” At
the end of the analysis, all of these quantities will be written to disk as
the final form of the generated halo catalog.

Quantities may be available in the initial fields found in the halo catalog,
or calculated from a function after supplying a definition. An example
definition of center of mass is shown below. If you think that
your quantity may be of use to the general community, add it to
yt_astro_analysis/halo_analysis/halo_catalog/halo_quantities.py
and issue a pull request. Default halo quantities are:

	particle_identifier – Halo ID (e.g. 0 to N)

	particle_mass – Mass of halo

	particle_position_x – Location of halo

	particle_position_y – Location of halo

	particle_position_z – Location of halo

	virial_radius – Virial radius of halo

An example of adding a quantity:

hc.add_quantity("center_of_mass")

An example of defining your own quantity:

def my_quantity_function(halo):
 # Define quantity to return
 quantity = 5

 return quantity

Add your filter to the filter registry
add_quantity("my_quantity", my_quantity_function)

... Later on in your script
hc.add_quantity("my_quantity")

This quantity will then be accessible for functions called later via the
quantities dictionary that is associated with the halo object.

def my_new_function(halo):
 print(halo.quantities["my_quantity"])

add_callback("print_quantity", my_new_function)

... Anywhere after "my_quantity" has been called
hc.add_callback("print_quantity")

Callbacks

A callback is actually the super class for quantities and filters and
is a general purpose function that does something, anything, to a Halo
object. This can include hanging new attributes off the Halo object,
performing analysis and writing to disk, etc. A callback does not return
anything.

An example of using a pre-defined callback where we create a sphere for
each halo with a radius that is twice the saved radius.

hc.add_callback("sphere", factor=2.0)

Currently available callbacks are located in
yt_astro_analysis/halo_analysis/halo_catalog/halo_callbacks.py. New callbacks may
be added by using the syntax shown below. If you think that your
callback may be of use to the general community, add it to
halo_callbacks.py and issue a pull request.

An example of defining your own callback:

def my_callback_function(halo):
 # Perform some callback actions here
 x = 2
 halo.x_val = x

Add the callback to the callback registry
add_callback("my_callback", my_callback_function)

... Later on in your script
hc.add_callback("my_callback")

Recipes

Recipes allow you to create analysis tasks that consist of a series of
callbacks, quantities, and filters that are run in succession. An example
of this is
calculate_virial_quantities(),
which calculates virial quantities by first creating a sphere container,
performing 1D radial profiles, and then interpolating to get values at a
specified threshold overdensity. All of these operations are separate
callbacks, but the recipes allow you to add them to your analysis pipeline
with one call. For example,

hc.add_recipe("calculate_virial_quantities", ["radius", "matter_mass"])

The available recipes are located in
yt_astro_analysis/halo_analysis/halo_catalog/halo_recipes.py. New recipes can be
created in the following manner:

def my_recipe(halo_catalog, fields, weight_field=None):
 # create a sphere
 halo_catalog.add_callback("sphere")
 # make profiles
 halo_catalog.add_callback("profile", ["radius"], fields, weight_field=weight_field)
 # save the profile data
 halo_catalog.add_callback("save_profiles", output_dir="profiles")

add recipe to the registry of recipes
add_recipe("profile_and_save", my_recipe)

... Later on in your script
hc.add_recipe("profile_and_save", ["density", "temperature"], weight_field="cell_mass")

Note, that unlike callback, filter, and quantity functions that take a Halo
object as the first argument, recipe functions should take a HaloCatalog
object as the first argument.

Running the Pipeline

After all callbacks, quantities, and filters have been added, the
analysis begins with a call to
create().

hc.create()

The save_halos keyword determines whether the actual Halo objects
are saved after analysis on them has completed or whether just the
contents of their quantities dicts will be retained for creating the
final catalog. The looping over halos uses a call to parallel_objects
allowing the user to control how many processors work on each halo.
The final catalog is written to disk in the output directory given
when the
HaloCatalog
object was created.

All callbacks, quantities, and filters are stored in an actions list,
meaning that they are executed in the same order in which they were added.
This enables the use of simple, reusable, single action callbacks that
depend on each other. This also prevents unnecessary computation by allowing
the user to add filters at multiple stages to skip remaining analysis if it
is not warranted.

Parallelism

Halo analysis using the
HaloCatalog
can be parallelized by adding yt.enable_parallelism() to the top of the
script and running with mpirun.

import yt

yt.enable_parallelism()
from yt.extensions.astro_analysis.halo_analysis import HaloCatalog

halos_ds = yt.load("rockstar_halos/halos_0.0.bin")
data_ds = yt.load("Enzo_64/RD0006/RedshiftOutput0006")
hc = HaloCatalog(data_ds=data_ds, halos_ds=halos_ds)
hc.create(njobs="auto")

The nature of the parallelism can be configured with two keywords provided to the
create()
function: njobs and dynamic. If dynamic is set to False, halos will be
distributed evenly over all processors. If `dynamic is set to True, halos
will be allocated to processors via a task queue. The njobs keyword determines
the number of processor groups over which the analysis will be divided. The
default value for njobs is “auto”. In this mode, a single processor will be
allocated to analyze a halo. The dynamic keyword is overridden to False if
the number of processors being used is even and True (use a task queue) if odd.
Set njobs to -1 to mandate a single processor to analyze a halo and to a positive
number to create that many processor groups for performing analysis. The number of
processors used per halo will then be the total number of processors divided by
njobs. For more information on running yt in parallel, see
Parallel Computation With yt [http://yt-project.org/docs/dev/analyzing/parallel_computation.html#parallel-computation].

Loading Created Halo Catalogs

A HaloCatalog
saved to disk can be reloaded as a yt dataset with the standard call to
load() [http://yt-project.org/docs/dev/reference/api/yt.loaders.html#yt.loaders.load]. See YTHaloCatalog [http://yt-project.org/docs/dev/examining/loading_data.html#halocatalog] for more information on
loading a newly created catalog.

 Overplotting Halo Annotations

Overplotting Halo Annotations

The yt_astro_analysis package includes a function that allows one
to overplot the locations of halos from a halo catalog on top of yt
slices and projections. See Plot Modifications: Overplotting Contours, Velocities, Particles, and More [http://yt-project.org/docs/dev/visualizing/callbacks.html#callbacks] for more information on
the other available plot modifications.

To add the halo annotation to the set of available plot modifications,
the following line must be added to your script.

import yt.extensions.astro_analysis.halo_analysis

	
annotate_halos(self, halo_catalog, circle_args=None, width=None, annotate_field=None, radius_field='virial_radius', center_field_prefix='particle_position', text_args=None, factor=1.0)

	This is a proxy for
HaloCatalogCallback.

This will overplot circles denoting halo locations. The radius of the circle
is given by the “virial_radius” field, but can be changed using the
radius_field keyword argument. The user must provide one of the following:

	a loaded yt Dataset [http://yt-project.org/docs/dev/reference/api/yt.data_objects.static_output.html#yt.data_objects.static_output.Dataset]
of a halo catalog (e.g., a Rockstar catalog).

	a YTDataContainer [http://yt-project.org/docs/dev/reference/api/yt.data_objects.data_containers.html#yt.data_objects.data_containers.YTDataContainer] from a halo
catalog dataset.

	a HaloCatalog

import yt
import yt.extensions.astro_analysis.halo_analysis

data_ds = yt.load("Enzo_64/RD0006/RedshiftOutput0006")
halos_ds = yt.load("rockstar_halos/halos_0.0.bin")

p = yt.ProjectionPlot(data_ds, "z", ("gas", "density"))
p.annotate_halos(halos_ds, annotate_field="particle_identifier")
p.save()

[image: _images/annotate_halos.png]

 Merger Trees

Merger Trees

Merger trees can be created for Rockstar-galaxies halo catalogs using
consistent-trees [https://bitbucket.org/pbehroozi/consistent-trees].
The resulting merger tree data can be loaded with
ytree [http://ytree.readthedocs.io]. Note, halo finding must be done on
a series of snapshots for this to work (see Halo Finding on Multiple Snapshots).

For halo catalogs created with FoF or HOP, the
treefarm [https://treefarm.readthedocs.io/] package can be used for
generating merger trees. For this to work, member particles from halos must
also be saved (see Saving Halo Particles). These merger trees can also
be loaded with ytree [http://ytree.readthedocs.io].

 Synthetic Observation

Synthetic Observation

Methods for generating various types of synthetic observations
from simulation data.

	Light Cone Generator
	Configuring the Light Cone Generator

	Creating Light Cone Solutions

	Making a Light Cone Projection

	Planning Simulations to use LightCones or LightRays

	Creating Position-Position-Velocity FITS Cubes

The following routines have been moved to the Trident [http://trident-project.org/] package.

	Light Ray Generator [https://trident.readthedocs.io/en/latest/light_ray_generator.html#light-ray-generator]

	AbsorptionSpectrum [https://trident.readthedocs.io/en/latest/absorption_spectrum.html#absorption-spectrum]

 Light Cone Generator

Light Cone Generator

Light cones are created by stacking multiple datasets together to
continuously span a given redshift interval. To make a projection of a
field through a light cone, the width of individual slices is adjusted
such that each slice has the same angular size.
Each slice is randomly shifted and projected along a random axis to
ensure that the same structures are not sampled multiple times. A
recipe for creating a simple light cone projection can be found in
the cookbook under Light Cone Projection.

[image: _images/LightCone_full_small.png]
A light cone projection of the thermal Sunyaev-Zeldovich Y parameter from
z = 0 to 0.4 with a 450x450 arcminute field of view using 9 individual
slices. The panels shows the contributions from the 9 individual slices with
the final light cone image shown in the bottom, right.

Configuring the Light Cone Generator

The required arguments to instantiate a
LightCone
object are the path to the simulation parameter file, the simulation type, the
nearest redshift, and the furthest redshift of the light cone.

from yt.extensions.astro_analysis.cosmological_observation.api import LightCone

lc = LightCone("enzo_tiny_cosmology/32Mpc_32.enzo", "Enzo", 0.0, 0.1)

The additional keyword arguments are:

	use_minimum_datasets (bool): If True, the minimum number of
datasets is used to connect the initial and final redshift. If False,
the light cone solution will contain as many entries as possible within
the redshift interval. Default: True.

	deltaz_min (float): Specifies the minimum Delta-z between
consecutive datasets in the returned list. Default: 0.0.

	minimum_coherent_box_fraction (float): Used with
use_minimum_datasets set to False, this parameter specifies the
fraction of the total box size to be traversed before rerandomizing the
projection axis and center. This was invented to allow light cones with
thin slices to sample coherent large scale structure, but in practice does
not work so well. Try setting this parameter to 1 and see what happens.
Default: 0.0.

	time_data (bool): Whether or not to include time outputs when
gathering datasets for time series. Default: True.

	redshift_data (bool): Whether or not to include redshift outputs
when gathering datasets for time series. Default: True.

	set_parameters (dict): Dictionary of parameters to attach to
ds.parameters. Default: None.

	
	output_dir (string): The directory in which images and data files
	will be written. Default: ‘LC’.

	output_prefix (string): The prefix of all images and data files.
Default: ‘LightCone’.

Creating Light Cone Solutions

A light cone solution consists of a list of datasets spanning a redshift
interval with a random orientation for each dataset. A new solution
is calculated with the
calculate_light_cone_solution()
function:

lc.calculate_light_cone_solution(seed=123456789, filename="lightcone.dat")

The keyword argument are:

	seed (int): the seed for the random number generator. Any light
cone solution can be reproduced by giving the same random seed.
Default: None.

	filename (str): if given, a text file detailing the solution will be
written out. Default: None.

Making a Light Cone Projection

With the light cone solution in place, projections with a given field of
view and resolution can be made of any available field:

field = "density"
field_of_view = (600.0, "arcmin")
resolution = (60.0, "arcsec")
lc.project_light_cone(
 field_of_vew,
 resolution,
 field,
 weight_field=None,
 save_stack=True,
 save_slice_images=True,
)

The field of view and resolution can be specified either as a tuple of
value and unit string or as a unitful YTQuantity.
Additional keyword arguments:

	weight_field (str): the weight field of the projection. This has
the same meaning as in standard projections. Default: None.

	photon_field (bool): if True, the projection data for each slice is
decremented by 4 pi R 2 , where R is the luminosity
distance between the observer and the slice redshift. Default: False.

	save_stack (bool): if True, the unflatted light cone data including
each individual slice is written to an hdf5 file. Default: True.

	save_final_image (bool): if True, save an image of the final light
cone projection. Default: True.

	save_slice_images (bool): save images for each individual projection
slice. Default: False.

	cmap_name (string): color map for images. Default: “algae”.

	njobs (int): The number of parallel jobs over which the light cone
projection will be split. Choose -1 for one processor per individual
projection and 1 to have all processors work together on each projection.
Default: 1.

	dynamic (bool): If True, use dynamic load balancing to create the
projections. Default: False.

Note

As of yt-3.0, the halo mask and unique light cone functionality no longer exist. These are still available in yt-2.x. If you would like to use these features in yt-3.x, help is needed to port them over. Contact the yt-users mailing list if you are interested in doing this.

 Planning Simulations to use LightCones or LightRays

Planning Simulations to use LightCones or LightRays

If you want to run a cosmological simulation that will have just enough data
outputs to create a light cone or light ray, the
plan_cosmology_splice()
function will calculate a list of redshifts outputs that will minimally
connect a redshift interval.

from yt.extensions.astro_analysis.cosmological_observation.api import CosmologySplice

my_splice = CosmologySplice("enzo_tiny_cosmology/32Mpc_32.enzo", "Enzo")
my_splice.plan_cosmology_splice(0.0, 0.1, filename="redshifts.out")

This will write out a file, formatted for simulation type, with a list of
redshift dumps. The keyword arguments are:

	decimals (int): The decimal place to which the output redshift will
be rounded. If the decimal place in question is nonzero, the redshift will
be rounded up to ensure continuity of the splice. Default: 3.

	filename (str): If provided, a file will be written with the redshift
outputs in the form in which they should be given in the enzo parameter
file. Default: None.

	start_index (int): The index of the first redshift output. Default: 0.

 Creating Position-Position-Velocity FITS Cubes

Creating Position-Position-Velocity FITS Cubes

For an example of this functionality, see this
sample notebook [https://github.com/yt-project/yt_astro_analysis/blob/master/doc/source/PPVCube.ipynb]

 Exporting to External Radiation Transport Codes

Exporting to External Radiation Transport Codes

	Exporting to RADMC-3D
	Continuum Emission

	Line Emission

 Exporting to RADMC-3D

Exporting to RADMC-3D

New in version 2.6.

[image: _images/31micron.png]

Above: a sample image showing the continuum dust emission image around a massive protostar
made using RADMC-3D and plotted with pyplot.

RADMC-3D [http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/] is a
three-dimensional Monte-Carlo radiative transfer code that is capable of
handling both line and continuum emission. yt comes equipped with a
RadMC3DWriter
class that exports AMR data to a format that RADMC-3D can read. Currently, only
the ASCII-style data format is supported.
In principle, this allows one to use RADMC-3D to make synthetic observations
from any simulation data format that yt recognizes.

Continuum Emission

To compute thermal emission intensities, RADMC-3D needs several inputs files that
describe the spatial distribution of the dust and photon sources. To create these
files, first import the RADMC-3D exporter, which is not loaded into your environment
by default:

import yt
import numpy as np
from yt.extensions.astro_analysis.radmc3d_export.api import RadMC3DWriter, RadMC3DSource

Next, load up a dataset and instantiate the RadMC3DWriter.
For this example, we’ll use the “StarParticle” dataset,
available here [http://yt-project.org/data/].

ds = yt.load("StarParticles/plrd01000/")
writer = RadMC3DWriter(ds)

The first data file to create is the “amr_grid.inp” file, which describes the structure
of the AMR index. To create this file, simply call:

writer.write_amr_grid()

Next, we must give RADMC-3D information about the dust density. To do this, we
define a field that calculates the dust density in each cell. We
assume a constant dust-to-gas mass ratio of 0.01:

dust_to_gas = 0.01

def _DustDensity(field, data):
 return dust_to_gas * data["density"]

ds.add_field(("gas", "dust_density"), function=_DustDensity, units="g/cm**3")

We save this information into a file called “dust_density.inp”.

writer.write_dust_file(("gas", "dust_density"), "dust_density.inp")

Finally, we must give RADMC-3D information about any stellar sources that are
present. To do this, we have provided the
RadMC3DSource
class. For this example, we place a single source with temperature 5780 K
at the center of the domain:

radius_cm = 6.96e10
mass_g = 1.989e33
position_cm = [0.0, 0.0, 0.0]
temperature_K = 5780.0
star = RadMC3DSource(radius_cm, mass_g, position_cm, temperature_K)

sources_list = [star]
wavelengths_micron = np.logspace(-1.0, 4.0, 1000)

writer.write_source_files(sources_list, wavelengths_micron)

The last line creates the files “stars.inp” and “wavelength_micron.inp”,
which describe the locations and spectra of the stellar sources as well
as the wavelengths RADMC-3D will use in it’s calculations.

If everything goes correctly, after executing the above code, you should have
the files “amr_grid.inp”, “dust_density.inp”, “stars.inp”, and “wavelength_micron.inp”
sitting in your working directory. RADMC-3D needs a few more configuration files to
compute the thermal dust emission. In particular, you need an opacity file, like the
“dustkappa_silicate.inp” file included in RADMC-3D, a main “radmc3d.inp” file that sets
some runtime parameters, and a “dustopac.inp” that describes the assumed composition of the dust.
yt cannot make these files for you; in the example that follows, we used a
“radmc3d.inp” file that looked like:

nphot = 1000000
nphot_scat = 1000000

which basically tells RADMC-3D to use 1,000,000 photon packets instead of the default 100,000. The
“dustopac.inp” file looked like:

2
1

1
0
silicate

To get RADMC-3D to compute the dust temperature, run the command:

./radmc3D mctherm

in the directory that contains your “amr_grid.inp”, “dust_density.inp”, “stars.inp”, “wavelength_micron.inp”,
“radmc3d.inp”, “dustkappa_silicate.inp”, and “dustopac.inp” files. If everything goes correctly, you should
get a “dust_temperature.dat” file in your working directory. Once that file is generated, you can use
RADMC-3D to generate SEDs, images, and so forth. For example, to create an image at 31 microns, do the command:

./radmc3d image lambda 31 sizeau 30000 npix 800

which should create a file called “image.out”. You can view this image using pyplot or whatever other
plotting package you want. To facilitate this, we provide helper functions
that parse the image.out file, returning a header dictionary with some useful metadata
and an np.array containing the image values. To plot this image in pyplot, you could do something like:

import matplotlib.pyplot as plt
import numpy as np
from yt.extensions.astro_analysis.radmc3d_export.api import read_radmc3d_image

header, image = read_radmc3d_image("image.out")

Nx = header["Nx"]
Ny = header["Ny"]

x_hi = 0.5 * header["pixel_size_cm_x"] * Nx
x_lo = -x_hi
y_hi = 0.5 * header["pixel_size_cm_y"] * Ny
y_lo = -y_hi

X = np.linspace(x_lo, x_hi, Nx)
Y = np.linspace(y_lo, y_hi, Ny)

plt.pcolormesh(X, Y, np.log10(image), cmap="hot")
cbar = plt.colorbar()
plt.axis((x_lo, x_hi, y_lo, y_hi))
ax = plt.gca()
ax.set_xlabel(r"x (cm)")
ax.set_ylabel(r"y (cm)")
cbar.set_label(r"Log Intensity (erg cm$^{-2}$ s$^{-1}$ Hz$^{-1}$ ster$^{-1}$)")
plt.savefig("dust_continuum.png")

The resulting image should look like:

[image: _images/dust_continuum.png]
This barely scratches the surface of what you can do with RADMC-3D. Our goal here is
just to describe how to use yt to export the data it knows about (densities, stellar
sources, etc.) into a format that RADMC-3D can recognize.

Line Emission

The file format required for line emission is slightly different. The
following script will generate two files, one called “numderdens_co.inp”,
which contains the number density of CO molecules for every cell in the index,
and another called “gas-velocity.inp”, which is useful if you want to include
doppler broadening.

import yt
from yt.extensions.astro_analysis.radmc3d_export.api import RadMC3DWriter

x_co = 1.0e-4
mu_h = yt.YTQuantity(2.34e-24, "g")

def _NumberDensityCO(field, data):
 return (x_co / mu_h) * data["density"]

yt.add_field(("gas", "number_density_CO"), function=_NumberDensityCO, units="cm**-3")

ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
writer = RadMC3DWriter(ds)

writer.write_amr_grid()
writer.write_line_file(("gas", "number_density_CO"), "numberdens_co.inp")
velocity_fields = ["velocity_x", "velocity_y", "velocity_z"]
writer.write_line_file(velocity_fields, "gas_velocity.inp")

 The Cookbook

The Cookbook

These scripts and Jupyter notebooks provide detailed demonstrations for
some of the functionality provide in the yt_astro_analysis package.
All of the data used in these recipes is freely available
here [http://yt-project.org/data/].

Example Scripts

	Cosmological Analysis
	Plotting Halos

	Light Cone Projection

Example Notebooks

	PPV Cube [https://github.com/yt-project/yt_astro_analysis/blob/master/doc/source/PPVCube.ipynb]

	Sunyaev Zeldovich [https://github.com/yt-project/yt_astro_analysis/blob/master/doc/source/SZ_projections.ipynb]

 Cosmological Analysis

Cosmological Analysis

These scripts demonstrate some basic and more advanced analysis that can be
performed on cosmological simulation datasets.

Plotting Halos

This is a mechanism for plotting circles representing identified particle halos
on an image.
See Halo Analysis and Overplotting Halo Annotations for more information.

import yt
from yt.extensions.astro_analysis.halo_analysis.halo_catalog import HaloCatalog

Load the dataset
ds = yt.load("Enzo_64/RD0006/RedshiftOutput0006")

Load the halo list from a rockstar output for this dataset
halos = yt.load("rockstar_halos/halos_0.0.bin")

Create the halo catalog from this halo list
hc = HaloCatalog(halos_ds=halos)
hc.load()

Create a projection with the halos overplot on top
p = yt.ProjectionPlot(ds, "x", "density")
p.annotate_halos(hc)
p.save()

Light Cone Projection

This script creates a light cone projection, a synthetic observation
that stacks together projections from multiple datasets to extend over
a given redshift interval.
See Light Cone Generator for more information.

import glob
import shutil

from yt.extensions.astro_analysis.cosmological_observation.api import LightCone

Create a LightCone object extending from z = 0 to z = 0.1.

We have already set up the redshift dumps to be
used for this, so we will not use any of the time
data dumps.
lc = LightCone(
 "enzo_tiny_cosmology/32Mpc_32.enzo",
 "Enzo",
 0.0,
 0.1,
 observer_redshift=0.0,
 time_data=False,
)

Calculate a randomization of the solution.
lc.calculate_light_cone_solution(seed=123456789, filename="LC/solution.txt")

Choose the field to be projected.
field = "szy"

Use the LightCone object to make a projection with a 600 arcminute
field of view and a resolution of 60 arcseconds.
Set njobs to -1 to have one core work on each projection
in parallel.
lc.project_light_cone(
 (600.0, "arcmin"),
 (60.0, "arcsec"),
 field,
 weight_field=None,
 save_stack=True,
 save_final_image=True,
 save_slice_images=True,
 njobs=-1,
)

By default, the light cone projections are kept in the LC directory,
but this moves them back to the current directory so that they're rendered
in our cookbook.

for file in glob.glob("LC/*png"):
 shutil.move(file, ".")

 Contributing

Contributing

We really want your contributions! As an official
yt-project [http://yt-project.org/] extension, everything in the
yt Contributor Guide [https://github.com/yt-project/yt#contributing]
applies here.

This package uses the same development practices as yt [https://github.com/yt-project/yt] itself, including code style and
testing. As such, please consult the yt Developer Guide [http://yt-project.org/docs/dev/developing/index.html].

 Citing yt_astro_analysis

Citing yt_astro_analysis

If you use the yt_astro_analysis package for your work, please cite the
yt_astro_analysis [https://zenodo.org/record/1458961#.W8ZcVXFKht8]
entry on zenodo.org [https://zenodo.org/] as well as the
yt method paper [http://adsabs.harvard.edu/abs/2011ApJS..192....9T].
Feel free to use the text below in your publications:

Analysis was performed using the yt_astro_analysis extension
(Smith et al. 2018) of the yt analysis toolkit (Turk et al. 2011).

Analysis was performed using the yt_astro_analysis extension
\citep{yt.astro.analysis} of the yt analysis toolkit \citep{yt}.

BbTeX entries are provided below:

@misc{yt.astro.analysis,
 author = {Britton Smith and
 Matthew Turk and
 John ZuHone and
 Nathan Goldbaum and
 Cameron Hummels and
 Hilary Egan and
 John Wise and
 Anthony Scopatz and
 Miguel de Val-Borro and
 Ben Keller and
 Mark Richardson},
 title = {yt-astro-analysis},
 month = oct,
 year = 2018,
 doi = {10.5281/zenodo.1458961},
 url = {https://doi.org/10.5281/zenodo.1458961}
}

@ARTICLE{yt,
 author = {{Turk}, M.~J. and {Smith}, B.~D. and {Oishi}, J.~S. and {Skory}, S. and
{Skillman}, S.~W. and {Abel}, T. and {Norman}, M.~L.},
 title = "{yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data}",
 journal = {The Astrophysical Journal Supplement Series},
archivePrefix = "arXiv",
 eprint = {1011.3514},
 primaryClass = "astro-ph.IM",
 keywords = {cosmology: theory, methods: data analysis, methods: numerical},
 year = 2011,
 month = jan,
 volume = 192,
 eid = {9},
 pages = {9},
 doi = {10.1088/0067-0049/192/1/9},
 adsurl = {http://adsabs.harvard.edu/abs/2011ApJS..192....9T},
 adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}

 Help

Help

If you encounter problems, we want to help and there are lots
of places to get help. As an extension of the yt project [http://yt-project.org/], we are members of the yt community.
Any questions regarding ytree can be posted to the yt users list [http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org].
You will also find interactive help on the yt slack channel [http://yt-project.org/docs/dev/help/index.html#go-on-slack-or-irc-to-ask-a-question].

 Reference

Reference

Below are reference materials for the yt_astro_analysis package,
including API documentation for all available functionality and
a log of changes from each stable release.

	API Reference
	Halo Analysis

	Halo Finders

	Cosmology Observation

	RADMC-3D exporting

	ChangeLog
	Contributors

	Version 1.1

	Version 1.0

 API Reference

API Reference

Halo Analysis

The HaloCatalog object is the primary means for performing custom analysis
on cosmological halos. It is also the primary interface for halo finding.

	HaloCatalog([halos_ds, data_ds, ...])

	Create a HaloCatalog: an object that allows for the creation and association of data with a set of halo objects.

	add_callback(name, function)

	

	add_filter(name, function)

	

	add_quantity(name, function)

	

	add_recipe(name, function)

	

	delete_attribute(halo, attribute)

	Delete attribute from halo object.

	halo_sphere(halo[, radius_field, factor, ...])

	Create a sphere data container to associate with a halo.

	iterative_center_of_mass(halo[, ...])

	Adjust halo position by iteratively recalculating the center of mass while decreasing the radius.

	load_profiles(halo[, storage, fields, ...])

	Load profile data from disk.

	phase_plot(halo[, output_dir, phase_args, ...])

	Make a phase plot for the halo object.

	profile(halo, bin_fields, profile_fields[, ...])

	Create 1, 2, or 3D profiles of a halo.

	save_profiles(halo[, storage, filename, ...])

	Save profile data to disk.

	sphere_bulk_velocity(halo)

	Set the bulk velocity for the sphere.

	sphere_field_max_recenter(halo, field)

	Recenter the halo sphere on the location of the maximum of the given field.

	virial_quantities(halo, fields[, ...])

	Calculate the value of the given fields at the virial radius defined at the given critical density by interpolating from radial profiles.

	not_subhalo(halo[, field_type])

	Only return true if this halo is not a subhalo.

	quantity_value(halo, field, operator, value, ...)

	Filter based on a value in the halo quantities dictionary.

	calculate_virial_quantities(pipeline, fields)

	Calculate virial quantities with the following procedure: 1.

	HaloCatalogCallback(halo_catalog[, ...])

	Plots circles at the locations of all the halos in a halo catalog with radii corresponding to the virial radius of each halo.

Halo Finders

The halo finders should only be run from the HaloCatalog, but the links below
display the various settings available for each.

	FOFHaloFinder(ds[, subvolume, link, ...])

	Friends-of-friends halo finder.

	HOPHaloFinder(ds[, subvolume, threshold, ...])

	HOP halo finder.

	RockstarHaloFinder(ts[, num_readers, ...])

	Spawns the Rockstar Halo finder, distributes particles and finds halos.

Cosmology Observation

Light cone generation and simulation analysis. (See also
Light Cone Generator.)

	CosmologySplice(parameter_filename, ...[, ...])

	Class for splicing together datasets to extend over a cosmological distance.

	LightCone(parameter_filename, ...[, ...])

	Initialize a LightCone object.

RADMC-3D exporting

	RadMC3DLayer(level, parent, unique_id, LE, ...)

	This class represents an AMR "layer" of the style described in the radmc3d manual.

	RadMC3DWriter(ds[, max_level])

	This class provides a mechanism for writing out data files in a format readable by radmc3d.

 yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog

yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog

	
class yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog(halos_ds=None, data_ds=None, data_source=None, halo_field_type='all', finder_method=None, finder_kwargs=None, output_dir='halo_catalogs')

	Create a HaloCatalog: an object that allows for the creation and association
of data with a set of halo objects.

A HaloCatalog object pairs a simulation dataset and the output from a halo finder,
allowing the user to perform analysis on each of the halos found by the halo finder.
Analysis is performed by providing callbacks: functions that accept a Halo object
and perform independent analysis, return a quantity to be associated with the halo,
or return True or False whether a halo meets various criteria. The resulting set of
quantities associated with each halo is then written out to disk at a “halo catalog.”
This halo catalog can then be loaded in with yt as any other simulation dataset.

	Parameters

	
	halos_ds (str [https://docs.python.org/3/library/stdtypes.html#str]) – Dataset created by a halo finder. If None, a halo finder should be
provided with the finder_method keyword.

	data_ds (str [https://docs.python.org/3/library/stdtypes.html#str]) – Dataset created by a simulation.

	data_source (data container) – Data container associated with either the halos_ds to use for analysis.
This can be used to restrict analysis to a subset of the full catalog.
By default, the entire catalog will be analyzed.

	halo_field_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The field type for halos. This can be used to specify a certain type of halo
in a dataset that contains multiple types.
Default: “all”

	finder_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – Halo finder to be used if no halos_ds is given.

	output_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The top level directory into which analysis output will be written.
Default: “halo_catalogs”

	finder_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arguments to pass to the halo finder if finder_method is given.

Examples

>>> # create profiles or overdensity vs. radius for each halo and save to disk
>>> import yt
>>> from yt.extensions.astro_analysis.halo_analysis import HaloCatalog
>>> data_ds = yt.load("DD0064/DD0064")
>>> halos_ds = yt.load("rockstar_halos/halos_64.0.bin",
... output_dir="halo_catalogs/catalog_0064")
>>> hc = HaloCatalog(data_ds=data_ds, halos_ds=halos_ds)
>>> # filter out halos with mass < 1e13 Msun
>>> hc.add_filter("quantity_value", "particle_mass", ">", 1e13, "Msun")
>>> # create a sphere object with radius of 2 times the virial_radius field
>>> hc.add_callback("sphere", factor=2.0, radius_field="virial_radius")
>>> # make radial profiles
>>> hc.add_callback("profile", "radius", [("gas", "overdensity")],
... weight_field="cell_volume", accumulation=True)
>>> # save the profiles to disk
>>> hc.add_callback("save_profiles", output_dir="profiles")
>>> # create the catalog
>>> hc.create()

>>> # load in the saved halo catalog and all the profile data
>>> halos_ds = yt.load("halo_catalogs/catalog_0064/catalog_0064.0.h5")
>>> hc = HaloCatalog(halos_ds=halos_ds,
 output_dir="halo_catalogs/catalog_0064")
>>> hc.add_callback("load_profiles", output_dir="profiles")
>>> hc.load()

See also

add_callback, add_filter, add_quantity, add_recipe

	__init__([halos_ds, data_ds, data_source, ...])

	

	add_callback(callback, *args, **kwargs)

	Add a callback to the halo catalog action list.

	add_filter(halo_filter, *args, **kwargs)

	Add a filter to the halo catalog action list.

	add_quantity(key, *args, **kwargs)

	Add a quantity to the halo catalog action list.

	add_recipe(recipe, *args, **kwargs)

	Add a recipe to the halo catalog action list.

	create([save_halos, save_output, njobs, dynamic])

	Create the halo catalog given the callbacks, quantities, and filters that have been provided.

	get_dependencies(fields)

	

	load([njobs, dynamic])

	Load a previously created halo catalog.

	partition_index_2d(axis)

	

	partition_index_3d(ds[, padding, rank_ratio])

	

	partition_index_3d_bisection_list()

	Returns an array that is used to drive _partition_index_3d_bisection, below.

	partition_region_3d(left_edge, right_edge[, ...])

	Given a region, it subdivides it into smaller regions for parallel analysis.

	comm

	

	output_basename

	

	output_dir

	

	source_ds

	

 yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.__init__

yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.__init__

	
HaloCatalog.__init__(halos_ds=None, data_ds=None, data_source=None, halo_field_type='all', finder_method=None, finder_kwargs=None, output_dir='halo_catalogs')

	

 yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.add_callback

yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.add_callback

	
HaloCatalog.add_callback(callback, *args, **kwargs)

	Add a callback to the halo catalog action list.

A callback is a function that accepts and operates on a Halo object and
does not return anything. Callbacks must exist within the callback_registry.
Give additional args and kwargs to be passed to the callback here.

	Parameters

	callback (string) – The name of the callback.

Examples

>>> # Here, a callback is defined and added to the registry.
>>> def _say_something(halo, message):
... my_id = halo.quantities['particle_identifier']
... print "Halo %d: here is a message - %s." % (my_id, message)
>>> add_callback("hello_world", _say_something)

>>> # Now this callback is accessible to the HaloCatalog object
>>> hc.add_callback("hello_world", "this is my message")

 yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.add_filter

yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.add_filter

	
HaloCatalog.add_filter(halo_filter, *args, **kwargs)

	Add a filter to the halo catalog action list.

A filter is a function that accepts a Halo object and returns either True
or False. If True, any additional actions added to the list are carried out
and the results are added to the final halo catalog. If False, any further
actions are skipped and the halo will be omitted from the final catalog.
Filters must exist within the filter_registry. Give additional args and kwargs
to be passed to the filter function here.

	Parameters

	halo_filter (string) – The name of the filter.

Examples

>>> # define a filter and add it to the register.
>>> def _my_filter(halo, mass_value):
... return halo.quantities["particle_mass"] > unyt_quantity(mass_value, "Msun")
>>> # add it to the register
>>> add_filter("mass_filter", _my_filter)

>>> # add the filter to the halo catalog actions
>>> hc.add_filter("mass_value", 1e12)

 yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.add_quantity

yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.add_quantity

	
HaloCatalog.add_quantity(key, *args, **kwargs)

	Add a quantity to the halo catalog action list.

A quantity is a function that accepts a Halo object and return a value or
values. These values are stored in a “quantities” dictionary associated
with the Halo object. Quantities must exist within the quantity_registry.
Give additional args and kwargs to be passed to the quantity function here.

	Parameters

	
	key (string) – The name of the callback.

	field_type (string) – If not None, the quantity is the value of the field provided by the
key parameter, taken from the halo finder dataset. This is the way
one pulls values for the halo from the halo dataset.
Default : None

Examples

>>> # pull the virial radius from the halo finder dataset
>>> hc.add_quantity("virial_radius", field_type="halos")

>>> # define a custom quantity and add it to the register
>>> def _mass_squared(halo):
... # assume some entry "particle_mass" exists in the quantities dict
... return halo.quantities["particle_mass"]**2
>>> add_quantity("mass_squared", _mass_squared)

>>> # add it to the halo catalog action list
>>> hc.add_quantity("mass_squared")

 yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.add_recipe

yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.add_recipe

	
HaloCatalog.add_recipe(recipe, *args, **kwargs)

	Add a recipe to the halo catalog action list.

A recipe is an operation consisting of a series of callbacks, quantities,
and/or filters called in succession. Recipes can be used to store a more
complex series of analysis tasks as a single entity.

Currently, the available recipe is calculate_virial_quantities.

	Parameters

	halo_recipe (string) – The name of the recipe.

Examples

>>> import yt
>>> from yt.extensions.astro_analysis.halo_analysis import HaloCatalog
>>>
>>> data_ds = yt.load('Enzo_64/RD0006/RedshiftOutput0006')
>>> halos_ds = yt.load('rockstar_halos/halos_0.0.bin')
>>> hc = HaloCatalog(data_ds=data_ds, halos_ds=halos_ds)
>>>
>>> # Filter out less massive halos
>>> hc.add_filter("quantity_value", "particle_mass", ">", 1e14, "Msun")
>>>
>>> # Calculate virial radii
>>> hc.add_recipe("calculate_virial_quantities", ["radius", "matter_mass"])
>>>
>>> hc.create()

 yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.create

yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.create

	
HaloCatalog.create(save_halos=False, save_output=True, njobs='auto', dynamic=False)

	Create the halo catalog given the callbacks, quantities, and filters that
have been provided.

This is a wrapper around the main _run function with default arguments tuned
for halo catalog creation. By default, halo objects are not saved but the
halo catalog is written, opposite to the behavior of the load function.

	Parameters

	
	save_halos (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, a list of all Halo objects is retained under the “halo_list”
attribute. If False, only the compiles quantities are saved under the
“catalog” attribute.
Default: False

	save_output (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, save the final catalog to disk.
Default: True

	njobs (int [https://docs.python.org/3/library/functions.html#int]) – The number of jobs over which to divide halo analysis. If set to “auto”,
use a task queue if total number of processors is an odd number and
divide jobs evenly if an even number.
Default: “auto”

	dynamic (int [https://docs.python.org/3/library/functions.html#int]) – If False, halo analysis is divided evenly between all available processors.
If True, parallelism is performed via a task queue. If njobs is set to
“auto”, behavior is controlled in the way described above.
Default: False

See also

load

 yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.get_dependencies

yt_astro_analysis.halo_analysis.halo_catalog.halo_catalog.HaloCatalog.get_dependencies

	
HaloCatalog.get_dependencies(fields)

	

